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Experience from the Trenches

● Unified library for prompted LM evaluations

● Frequently used by LM trainers and researchers

● Backend for Open LLM Leaderboard’s evaluation tasks

● Experience reproducible evaluation, and seeing what can go horribly 

wrong
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https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard


Outline

● Fundamentals of LM Evaluation
Evaluation background, Measurement methods, Metrics, …

● LM-specific complications

Unique reproducibility difficulties, Non-robustness, Data contamination, … 

● General benchmarking complications
General evaluation pitfalls: Measurement validity, Benchmark saturation, ..

● Addressing Pitfalls
Publishing evaluation code, Better reporting, …

● Future Directions
Dynamic eval sets, Evaluating more complex capabilities, Multimodality, Agents, …
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Goals

You should leave with understanding/knowledge of

● How LM Evaluation is currently performed

● What issues are often faced in evaluating LMs

● Best practices for reliable, reproducible LM evaluation

● Areas that are open for future research
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Scope

● Primary focus: evaluation of base and instruction-tuned LMs

● On zero- and few-shot prompted tasks

● What won’t be the focus:
○ Agent Evaluation

○ Tool Use + Function Calling

○ Retrieval-Augmented Generation (“RAG”)
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A Key Challenge in LM Evaluation

There can be many semantically equivalent but 
syntactically different ways of expressing the same 

idea.
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Freitag et al. (2020). BLEU might be Guilty but References are not Innocent

Biderman, Schoelkopf, Sutawika et al. (2024). Lessons from the Trenches on Reproducible Evaluation of Language Models

https://aclanthology.org/2020.emnlp-main.5/
https://arxiv.org/abs/2405.14782


However, the best tools are the very models we are 

seeking to evaluate. 

There are no perfect ways to evaluate the correctness 

of arbitrary natural language responses
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https://arxiv.org/abs/2405.14782


LM Evaluation Fundamentals
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Why Evaluate?

● Track progress in the field

● Compare and rank models

● Evaluate progress during training / finetuning

● Measure “intrinsic capabilities”

● Prevent regressions
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Why Evaluate?

● Tracking progress
○ Are models getting stronger?

● Quantitative measures
○ Able to objectively, reproducibly 

argue for improvement

Kiela et al. (2021). Dynabench: Rethinking Benchmarking in NLP
  Challenges in LM Evaluation  |  10

https://aclanthology.org/2021.naacl-main.324/


Why Evaluate?

● Making Comparisons
○ Is method X better than the baseline method 

Y?

○ In what situations is X better?

○ Which model should I use for my task?
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https://ai.meta.com/blog/meta-llama-3/


Gu et al. (2024). OLMES: A Standard for Language Model Evaluations.

Why Evaluate?

● Assess training runs
○ Sanity-check training, compare 

ablations, …

● Prevent regressions
○ During fine-tuning, model 

compression, …
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https://arxiv.org/abs/2406.08446


What Do We Want to Evaluate?
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LM Background

● LMs are probabilistic sequence 

models producing Logit 

distribution over Vocabulary
○ → Softmax(Logits) = P(xn|x<n) 

○ → Log(Softmax(Logits) = logP(xn|x<n)

● Teacher Forcing: compute 

P(xj|x<j) for every j < n in parallel
○ Used for efficient autoregressive 

training
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Measurement Methods

● How can we interact with an LM?
○ How will the model be actually used? Chat settings, reranking, classification…

● Obtain an observation we can use to score or rank task performance on 

a given test example
○ Note: limiting to prompted, training-free use-cases
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https://arxiv.org/abs/2405.14782


Measurement Methods

● Perplexity

● Conditional Loglikelihoods

● Text Generation
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https://arxiv.org/abs/2405.14782


Perplexity

● A.k.a. “Rolling Loglikelihood”

● (Exponentiated) average per-token negative loglikelihood
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https://arxiv.org/abs/2405.14782


Pros and Cons

● ✅ Directly measures language modeling → good for base LMs ; scales 

smoothly

● ✅ Can be performed using any data distribution–no annotation or 

labeling required

● ❌ Not as useful for instruction-tuned LMs

● ❌ Does not measure “real-world” freeform generation
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https://arxiv.org/abs/2405.14782


Conditional Loglikelihoods

The cow jumped over the moon
Input
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logP(Target | Input)

Target

Biderman, Schoelkopf, Sutawika et al. (2024). Lessons from the Trenches on Reproducible Evaluation of Language Models

https://arxiv.org/abs/2405.14782


Conditional Loglikelihoods

● To compute logP(y|x) in 1 LM call: 
○ Feed in (x + y) to LM, check how likely each token in y is. Sum per-token 

log probabilities
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The cow jumped over 

the earth

the hay 

the moon ✅
❌
❌
❌the galaxy 

Loglikelihood-based Multiple-Choice

Biderman, Schoelkopf, Sutawika et al. (2024). Lessons from the Trenches on Reproducible Evaluation of Language Models

https://arxiv.org/abs/2405.14782


● Compare loglikelihoods logP(yi|x) across a fixed set of answer strings yi
● Model’s answer: argmaxi(logP(yi|x))

Loglikelihood-based Multiple-Choice
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Answer: 
B

C

A ❌
❌
❌
✅D

P(“A”|c)

P(“B”|c)

P(“D”|c)

P(“C”|c)
Model’s answer: A ❌

Image: Stanford HAI (2024). Artificial Intelligence Index Report 
2024

https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024.pdf
https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024.pdf


Pros and Cons

● ✅ LM always selects an answer

● ✅ Very efficient to evaluate–only need (num. choices) calls to LM

● ✅ Closer to training distribution → good for base LMs

● ❌ Artificially easy

● ❌ “Real-world” usage is not multiple-choice
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https://arxiv.org/abs/2405.14782


● Can probabilistically sample from an LM’s output probability distribution

● Sample new token and repeat to generate text
● How most models are used

Text Generation

Greedy: pick most likely token Sampling: pick one of the K 
highest, pick randomly, …
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Image: Rush (2024). Large Language Models in 5 Formulas

https://www.youtube.com/watch?v=KCXDr-UOb9A


Scoring Freeform Generation
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Model’s answer: 9
find(“The answer is {x}”)

Parse

● Must extract and parse, compare to gold answer
○ Heuristically, using LLM-as-a-Judge, …

Biderman, Schoelkopf, Sutawika et al. (2024). Lessons from the Trenches on Reproducible Evaluation of Language Models

https://arxiv.org/abs/2405.14782


Pros and Cons

● ✅ “Realistic” setting

● ✅ Allows for techniques like Chain-of-Thought

● ❌ Calculating accuracy requires heuristic parsing, extraction rules → 

Scores skewed by parsing failures

● ❌ Much more expensive computationally

● ❌ Many different decoding hyperparameters to select
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https://arxiv.org/abs/2405.14782


Reproducibility

● All 3 approaches contain hyperparameters that can be varied

● These can strongly affect performance, but often underspecified!
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https://arxiv.org/abs/2405.14782


Tokenization

● Dealing with tokenization properly can be nightmarish

● All 3 approaches implicitly rely on tokenization

● How to establish “fair” comparisons across tokenizers?
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Normalization

● Comparing across tokenizers confounds loglikelihoods

● The tokenizer is part of the system even if not the model!

Biderman, Schoelkopf, Sutawika et al. (2024). Lessons from the Trenches on Reproducible Evaluation of Language Models

https://arxiv.org/abs/2405.14782


Tokenization Boundaries

● Generation is not free of painful implementation details…

● Switching the following prompts changes HumanEval scores significantly

1. 2. 
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Sliding Window Perplexity
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Press et al. (2020). Shortformer: Better Language Modeling using Shorter Inputs

● Early Token Curse: initial tokens in document are more difficult to predict

● How to measure perplexity on docs longer than model’s context length?

https://arxiv.org/abs/2012.15832


Underdocumentation and Tacit Knowledge

● Many papers underspecify their evaluation setups / measurement 

methods at a fundamental level!

● No one “correct” set of implementation details

● Knowing all these details requires tacit knowledge and field experience 

→ hence this tutorial
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LM-Specific Complications
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LM-Specific Complications

What are the reasons evaluation of LMs in particular is so challenging?
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Reproducibility

● Could you calculate these 

precise numbers yourself?

● How fair are these 

comparisons?
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Anthropic (2024). Introducing the next generation of Claude

https://www.anthropic.com/news/claude-3-family


Reproducibility

● LMs in particular are often non-robust in counterintuitive ways
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Prompt Sensitivity

● Choice of the prompt to use for evaluation can be make-or-break

  Challenges in LM Evaluation  |  39Sclar et al. (2024). Quantifying Language Models' Sensitivity to Spurious Features in Prompt 
Design or: How I learned to start worrying about prompt formatting

https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324


Prompt Sensitivity

Multiple-Choice (“MMLU-style”) Formulation

Cloze Formulation
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https://arxiv.org/abs/2405.14782


Prompt Sensitivity

● “Preferred” prompt and output format differs across models

●  → Rankings and experimental conclusions are changed by prompt 

choice!
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https://arxiv.org/abs/2405.14782


Prompt Sensitivity
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Alzahrani, Alyahya et al. (2024). When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards

https://arxiv.org/abs/2402.01781


● Choices and orderings of few-shot examples can significantly impact 
performance

Few-shot Example Sensitivity
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Min et al. (2022). Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?

https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2202.12837


To Prompt Engineer or Not To Prompt Engineer

● Engineering and taking the best prompt can overestimate performance 

in real few-shot settings
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Perez et al. (2021). True Few-Shot Learning with Language Models

https://arxiv.org/abs/2105.11447


Details Matter

→
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Biderman, Schoelkopf, Sutawika et al. (2024). Lessons from the Trenches on Reproducible Evaluation of Language Models

🦋 🌪

https://arxiv.org/abs/2405.14782


Fair Comparisons

● What constitutes a 1-to-1 or “apples-to-apples” comparison of two 

models?

● Should we…
○ Pick the “best” prompt per model? “Worst” prompt per model? Hold the prompt 

constant?

○ …
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https://arxiv.org/abs/2405.14782


Fair Comparisons

● “Fairness” will often be context-dependent!
○ Research question matters: minimizing VRAM? Training FLOP? Data efficiency?
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Dey et al. (2023). Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras Wafer-Scale Cluster

https://arxiv.org/abs/2304.03208


Evaluating Models Vs. Systems
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Dataset Contamination

● Benchmarks are built assuming novelty, generalization
○ Often using internet data as a source

● But LMs are trained on massive internet-scale datasets
○ Easy for test set contents to leak into pretraining data

○ Assumptions during construction may not hold (“validity”)
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Hendrycks et al. (2020). Measuring Massive Multitask Language Understanding

https://arxiv.org/abs/2009.03300


Dataset Contamination

● Contamination may not always be verbatim

● Very difficult to detect and prove!
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Yang et al. (2023). Rethinking Benchmark and Contamination for Language Models with Rephrased Samples

https://arxiv.org/abs/2311.04850


Dataset Contamination

● What even “counts” as contamination?

● How can we design contamination-proof evals?
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Jain et al. (2024). LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code

https://arxiv.org/abs/2403.07974


OLMo 1.7-7B: A 24 point improvement on MMLU

Task Contamination

● OLMo-1.7-7B: one way to get a good MMLU score is to pretrain with 

instruction data included

● Is training on instruction-following data “cheating”? No, but violates 

assumptions
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https://blog.allenai.org/olmo-1-7-7b-a-24-point-improvement-on-mmlu-92b43f7d269d


Are LMs “zero-shot”?
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Chung et al. (2022). Scaling Instruction-Finetuned Language Models

https://arxiv.org/abs/2210.11416


LMs Introduce New Benchmarking Challenges

● Doing reproducible evaluation on LMs is difficult–details matter

● The “right” evaluation choice is not universal
○ Some choices (e.g. drawing comparisons) must be contextual

● Novel validity challenges are introduced by scale
○ LMs at times work well due to everything being within-distribution. How can we truly 

test their generalization? 

○ Need to move beyond simple knowledge tests
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General Benchmarking Complications
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General Benchmarking Complications

Why is evaluation difficult in general?

What are the challenges in constructing useful datasets for LM evaluation?
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Where do benchmarks come from?
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Reading Comprehension seen as a useful task

From observed model multitask capabilities

Models are observed to produce toxic content
Models are observed to hallucinate



Life of a Benchmark

Inception

Gaining Traction

Fizzling Out

ActiveMaturity

Renewal
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Dehghani et al. (2021). The Benchmark Lottery

https://arxiv.org/abs/2107.07002


Benchmarks are Saturating Fast
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Kiela et al. (2023). Plotting Progress in AI

https://contextual.ai/plotting-progress-in-ai/


OpenLLM Leaderboard Through Time
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Fourrier et al. (2024). Performances are plateauing, let’s make the leaderboard steep again

https://huggingface.co/spaces/open-llm-leaderboard/blog


Benchmarks Influence Progress
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Dehghani et al. (2021). The Benchmark Lottery

A=BoolQ, B=CB, C=CoPA, D=MultiRC, E=ReCoRD, F=RTE, G=WiC, H=WSC

 “the method was not evaluated on X or Y 
dataset” or “the method’s performance is not 
SOTA on dataset Z”.

Task Selection Bias
● We optimize for what we can measure
● Benchmarks determine what can be measurable

Community Bias
● Specific benchmarks gain outsized popularity 

and influence

https://arxiv.org/abs/2107.07002


Overfitting
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https://xkcd.com/2899/

Goodhart’s Law

https://xkcd.com/2899/


Benchmarks Get Overfitted
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Zhang et al. (2024). A Careful Examination of Large Language Model Performance on Grade School Arithmetic

https://arxiv.org/abs/2405.00332v3


Benchmarks Get Overfitted

What we expect should hold
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https://arxiv.org/abs/2405.00332v3


Benchmarks Get Overfitted

Majority of models 
tested perform 
worst on GSM1K
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https://arxiv.org/abs/2405.00332v3


Evaluation Validity

● Benchmarks are frequently proxies for “real” performance
○ Certain benchmarks may not be a good proxy! (Saphra et al., 2023)

● “Measurement Validity”
○ Are our benchmarks measuring “true” improvements / capabilities?

○ Are improvements on benchmarks “real”?

● “Measurement Reliability”
○ Are our benchmarks reproducible?

○ Able to produce consistent results?

○ A measurement can be reliable but not valid
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Spurious Heuristics
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Benchmarks can be faulty or be solved by models by relying on something 
other than what was intended to be measured.
McCoy et al proposed a NLI task that sought to measure this.

McCoy et al. (2019). Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference

https://arxiv.org/abs/1902.01007


Spurious Heuristics
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Spurious Heuristics
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Spurious Heuristics
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https://arxiv.org/abs/1902.01007


Challenging Intuitions on Generalization

● Testing models on purely “natural” tasks overestimates performance on truly-unseen data

● Performance on task A may not intuitively translate to task B!
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https://arxiv.org/abs/2307.02477


Ecological Validity of Benchmarking
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Liao and Xiao (2023). Rethinking Model Evaluation as Narrowing the Socio-Technical Gap

https://arxiv.org/abs/2306.03100


Alternatives: Extrinsic Evaluations
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Model output quality evaluated based on utility towards a specific 

downstream application.

● Evaluate MT models based on how many manual corrections had to be 

made (Snover et al., 2006).

● Evaluate models translation or summaries by answering reading 

comprehension questions based on those artifacts (Jones et al., 2005; 

Callison-Burch, 2009; Scarton and Specia, 2016; Wang et al., 2020)

https://aclanthology.org/2006.amta-papers.25/
https://www.ll.mit.edu/r-d/publications/measuring-translation-quality-testing-english-speakers-new-defense-language
https://aclanthology.org/D09-1030/
https://aclanthology.org/L16-1579/
https://doi.org/10.18653/v1/2020.acl-main.450


When do scores become less meaningful?
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Fourrier et al. (2024). Performances are plateauing, let’s make the leaderboard steep again

https://huggingface.co/spaces/open-llm-leaderboard/blog


Observed Errors in MMLU Samples
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Gema et al. (2024). Are We Done with MMLU?

This becomes an even bigger deal as benchmarks saturate!

https://arxiv.org/abs/2406.04127


Error by Category
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https://arxiv.org/abs/2406.04127


Error Analysis Heuristic
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https://arxiv.org/abs/2406.04127


Are we Using the Right Metrics?
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Schaeffer et al. (2023). Are Emergent Abilities of Large Language Models a Mirage?

https://arxiv.org/abs/2304.15004


Are we Using the Right Metrics?
Using Non-linear or discontinuous scores, 
can observe “emergent capabilities” 
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https://arxiv.org/abs/2304.15004


Are we Using the Right Metrics?
Using linear or continuous scores, can 
observe performance scales predictably
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https://arxiv.org/abs/2304.15004


Automatic Metrics May Not Lead to Best Results
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Kocmi et al. (2021). To Ship or Not to Ship: An Extensive Evaluation of Automatic Metrics for Machine Translation

BLEU may have impeded progress in MT

Rouge favors systems that produce longer summaries

https://arxiv.org/abs/2107.10821


Human Evaluations are Diverse

  Challenges in LM Evaluation  |  82Belz et al. (2020). Disentangling the Properties of Human Evaluation Methods: A Classification System to Support Comparability, 
Meta-Evaluation and Reproducibility Testing

https://aclanthology.org/2020.inlg-1.24/
https://aclanthology.org/2020.inlg-1.24/
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Human Evaluations are Diverse
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Could lead to divergence due to :
(a) background knowledge, 
(b) preconceptions about language,
(c) general educational level.

Human Evaluation is not Gold Standard

  Challenges in LM Evaluation  |  86



Things to Consider when Utilizing Human Evaluations
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Things to Consider when Utilizing Human Evaluations
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Things to Consider when Utilizing Human Evaluations
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Howcroft et al., (2020). Twenty Years of Confusion in Human Evaluation: NLG Needs Evaluation Sheets and Standardised Definitions

https://aclanthology.org/2020.inlg-1.23/


New Metrics are Increasingly Neural Network-Based
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Zhang, Kishore, Wu et al,. (2020). BERTScore: Evaluating Text Generation with BERT

https://arxiv.org/abs/1904.09675


New Metrics are Increasingly Neural Network-Based
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Huang et al., (2024). An Empirical Study of LLM-as-a-Judge for LLM Evaluation: Fine-tuned Judge Models are Task-specific Classifiers

https://arxiv.org/abs/2403.02839v1


Must Metrics Reflect Human Evaluation?
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While metrics such as BLEU does not correlate to human judgment 
(Callison-Burch et al., 2006), it may not necessarily be desirable (Gehrmann 
et al., 2022).  Opt instead for multidimensional.

Output

Factuality

Bias

Reference 
Overlap

Correctness

https://www.aclweb.org/anthology/E06-1032
https://arxiv.org/abs/2202.06935
https://arxiv.org/abs/2202.06935


Direct Comparison is Not Straightforward!
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Gu et al. (2024). OLMES: A Standard for Language Model Evaluations.

CF CF CF? CF CF MCF MCF/CF CF CF CF? CF MCF MCF/CF

https://arxiv.org/abs/2406.08446


What Signal do We Want to Measure?
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[Madaan et al, 2024] Quantifying Variance in Evaluation Benchmarks

[Gu et al, 2024] OLMES: A Standard for Language Model Evaluations



Prompt choice affects performance

Multiple-Choice Formulation

Cloze Formulation
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Biderman, Schoelkopf, Sutawika et al. (2024). Lessons from the Trenches on Reproducible Evaluation of Language Models

https://arxiv.org/abs/2405.14782


Set of Prompts Could be Considered Part of the 
Benchmark
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Mizrahi et al., (2024). State of What Art? A Call for Multi-Prompt LLM Evaluation

https://arxiv.org/abs/2401.00595
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Polo et al. (2024). tinyBenchmarks: evaluating LLMs with fewer examples

Making Benchmarks Smaller by Targeted Sampling

https://arxiv.org/abs/2402.14992


But Shrinking May Not Offer The Full Picture
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Madaan et al. (2024). Quantifying Variance in Evaluation Benchmarks

https://arxiv.org/abs/2406.10229


Statistical Analysis would Benefit Benchmark 
Modification
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Wang, Ma, et al. (2024). MMLU-Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark

https://arxiv.org/abs/2406.01574


Benchmarks should …

● Imply robust in-domain performance if good performance is observed
○ We need more work on dataset design and data collection methods

● Have examples that are accurately and unambiguously annotated
○ Test examples should be validated thoroughly enough to remove erroneous examples 

and to properly handle ambiguous ones

● Offer adequate statistical power
○ Much larger and or much harder

● Reveal plausibly harmful social biases in systems and should not 
incentivize the creation of biased systems

○ Encourage the development and use of auxiliary bias evaluation metrics
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Bowman and Dahl (2021). What Will it Take to Fix Benchmarking in Natural Language Understanding?

https://arxiv.org/abs/2104.02145


Benchmarking is Difficult

● Benchmarks dictate what we measure → what we end up building

● Must ensure validity of our evaluations for findings to be useful

● Careful dataset construction and metric design is crucial
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Addressing Evaluation Pitfalls

What can we do to address these challenges right now?
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Reporting Standards for LM Benchmarking

● There are no standards for sufficient and complete reporting of 

evaluation details
○ → Many don’t report much info on evaluation setup at all (even their prompts!)

○ → For those who do, it’s easy to leave key facts out accidentally or through lack of 

understanding
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Share, share, share!*

Evaluation Code Methodology 
Details (Prompts 

included)

Model 
responses

*Don’t overshare: hold out an extra private test set!   Challenges in LM Evaluation  |  108



Sharing Code Mitigates Reproducibility Challenges

● Publishing evaluation code used to obtain results can ensure sufficient 

documentation

● Serving as a “ground truth” reference point for methodology
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Share Model Outputs

● Allows for reproducibility, even when API models are deprecated

● Allows for future error analysis

● Makes evaluation research possible even without $$$ for evaluating 

large or expensive models
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Avoid Copying Results Across Publications

● Results across different publications will likely not match in all settings
○ →Comparisons may not be meaningful

● Drawing baseline numbers directly from other work is likely to mislead!
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Improved Statistical Testing

● Most papers do not report error bars whatsoever

● Harder benchmarks are getting smaller
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Kamilė Lukošiūtė (2024). You need to be spending more money on evals.

https://kamilelukosiute.com/llms/You+need+to+be+spending+more+money+on+evals


Operationalizing Best Practices

● Reimplementing many evaluation tasks is a lot of work!
○ Hard to account for quirks of every individual benchmark

○ Evaluation code may be entangled with model inference code, etc…

○ → But shareable code goes a long way: https://github.com/openai/simple-evals

● You can use existing evaluation libraries as infrastructure to lower the 

overhead of adopting best practices
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https://github.com/openai/simple-evals


Existing Tooling and Standards

And more…
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Future Directions
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Future Directions

What are promising future research directions?

How can future LM evaluations be improved?

  Challenges in LM Evaluation  |  116



Multimodality

● State-of-the-art “LMs” are no longer text-only

● What are we using multimodal language models for?

● How do we evaluate multimodal understanding and generation well?
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RewardBench

[Lambert et al, 2024] RewardBench: Evaluating Reward Models for Language Modeling   Challenges in LM Evaluation  |  118



Tool Use

● Many LM-based systems are augmented to use external tools
○ Code interpreters

○ Calculators

○ Web search

○ And more!
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“Agentic” Evaluations

● Evaluating models directly in downstream use cases as part of “agent” 

loops

● In general, evals need to grow beyond being static, since models are 

used interactively!
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Agentic Evaluations
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Jimenez and Wang et al. (2024). SWE-Bench: Can Language Models Resolve Real-World GitHub Issues?

https://arxiv.org/abs/2310.06770


Red-Teaming

● Red-teaming: human annotators attempting to elicit harms
○ Extremely important and useful

○ Very company-specific ; requires care hiring and paying annotator workforce

○ Most “realistic” form of measuring efficacy of guardrails

● How can best practices for red teaming be standardized and improved?

● How can portions be automated?
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Contamination-Proof Benchmarks

● What eval processes are most reliant to gaming? What ones can be 

shown to require “true” generalization OOD? How can we measure or 

ensure this?

● Private test sets can help a bit, but…
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Dynamic Evaluation Datasets

● Adversarial evolving datasets
○ Dynabench: Rethinking Benchmarking in NLP

● Targeted model-generated evaluation datasets
○ Discovering Language Model Behaviors with Model-Written Evaluations

○ AutoBencher: Creating Salient, Novel, Difficult Datasets for Language Models

○ Task Me Anything
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https://arxiv.org/abs/2104.14337
https://arxiv.org/abs/2212.09251
https://arxiv.org/abs/2407.08351
https://arxiv.org/abs/2406.11775


Predictable Evals + Eval Scaling Laws

● Scaling laws let us derisk model scaling and extrapolate performance 

estimates for loss.

● Can we do the same for downstream tasks of interest?
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Schaeffer et al. (2024). Why Has Predicting Downstream Capabilities of Frontier Models with Scale Remained Elusive?

https://arxiv.org/abs/2405.10938
https://arxiv.org/abs/2406.04391


Conclusions
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LM Evaluation is Challenging

● Lack of clear reporting standards and best practices

● Reproducibility is crucial–models are often non-robust to many 

counterintuitively important factors

● Many exciting areas for future research
○ New application areas

○ Evaluations that are more reflective of how models are used

○ More complex, dynamic evaluation processes

○ Evaluation on more complex capabilities

  Challenges in LM Evaluation  |  127



Tutorial @ ICML 2024

Lintang Sutawika
@lintangsutawika

Challenges in LM Evaluation
Lehar 1-4

3.30 - 5.30pm CEST

Hailey Schoelkopf
@haileysch__


